Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
Mol Imaging Biol ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498063

ABSTRACT

PURPOSE: In this study, we explored the role of apoptosis as a potential biomarker for cardiac failure using functional micro-CT and fluorescence molecular tomography (FMT) imaging techniques in Ercc1 mutant mice. Ercc1 is involved in multiple DNA repair pathways, and its mutations contribute to accelerated aging phenotypes in both humans and mice, due to the accumulation of DNA lesions that impair vital DNA functions. We previously found that systemic mutations and cardiomyocyte-restricted deletion of Ercc1 in mice results in left ventricular (LV) dysfunction at older age. PROCEDURES AND RESULTS: Here we report that combined functional micro-CT and FMT imaging allowed us to detect apoptosis in systemic Ercc1 mutant mice prior to the development of overt LV dysfunction, suggesting its potential as an early indicator and contributing factor of cardiac impairment. The detection of apoptosis in vivo was feasible as early as 12 weeks of age, even when global LV function appeared normal, underscoring the potential of apoptosis as an early predictor of LV dysfunction, which subsequently manifested at 24 weeks. CONCLUSIONS: This study highlights the utility of combined functional micro-CT and FMT imaging in assessing cardiac function and detecting apoptosis, providing valuable insights into the potential of apoptosis as an early biomarker for cardiac failure.

2.
J Lipid Res ; 65(2): 100504, 2024 02.
Article in English | MEDLINE | ID: mdl-38246237

ABSTRACT

Coronary atherosclerosis is caused by plaque build-up, with lipids playing a pivotal role in its progression. However, lipid composition and distribution within coronary atherosclerosis remain unknown. This study aims to characterize lipids and investigate differences in lipid composition across disease stages to aid in the understanding of disease progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize lipid distributions in coronary artery sections (n = 17) from hypercholesterolemic swine. We performed histology on consecutive sections to classify the artery segments and to investigate colocalization between lipids and histological regions of interest in advanced plaque, including necrotic core and inflammatory cells. Segments were classified as healthy (n = 6), mild (n = 6), and advanced disease (n = 5) artery segments. Multivariate data analysis was employed to find differences in lipid composition between the segment types, and the lipids' spatial distribution was investigated using non-negative matrix factorization (NMF). Through this process, MALDI-MSI detected 473 lipid-related features. NMF clustering described three components in positive ionization mode: triacylglycerides (TAG), phosphatidylcholines (PC), and cholesterol species. In negative ionization mode, two components were identified: one driven by phosphatidylinositol(PI)(38:4), and one driven by ceramide-phosphoethanolamine(36:1). Multivariate data analysis showed the association between advanced disease and specific lipid signatures like PC(O-40:5) and cholesterylester(CE)(18:2). Ether-linked phospholipids and LysoPC species were found to colocalize with necrotic core, and mostly CE, ceramide, and PI species colocalized with inflammatory cells. This study, therefore, uncovers distinct lipid signatures correlated with plaque development and their colocalization with necrotic core and inflammatory cells, enhancing our understanding of coronary atherosclerosis progression.


Subject(s)
Coronary Artery Disease , Hyperlipoproteinemia Type II , Plaque, Atherosclerotic , Animals , Swine , Lipidomics , Ceramides , Necrosis , Phosphatidylcholines , Phospholipid Ethers , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
Article in English | MEDLINE | ID: mdl-37721879

ABSTRACT

Assessing the coronary circulation with contrast-enhanced echocardiography has high clinical relevance. However, it is not being routinely performed in clinical practice because the current clinical tools generally cannot provide adequate image quality. The contrast agent's visibility in the myocardium is generally poor, impaired by motion and nonlinear propagation artifacts. The established multipulse contrast schemes (MPCSs) and the more experimental singular value decomposition (SVD) filter also fall short to solve these issues. Here, we propose a scheme to process amplitude modulation/amplitude-modulated pulse inversion (AM/AMPI) echoes with higher order SVD (HOSVD) instead of conventionally summing the complementary pulses. The echoes from the complementary pulses form a separate dimension in the HOSVD algorithm. Then, removing the ranks in that dimension with dominant coherent signals coming from tissue scattering would provide the contrast detection. We performed both in vitro and in vivo experiments to assess the performance of our proposed method in comparison with the current standard methods. A flow phantom study shows that HOSVD on AM pulsing exceeds the contrast-to-background ratio (CBR) of conventional AM and an SVD filter by 10 and 14 dB, respectively. In vivo porcine heart results also demonstrate that, compared to AM, HOSVD improves CBR in open-chest acquisition (up to 19 dB) and contrast ratio (CR) in closed-chest acquisition (3 dB).


Subject(s)
Algorithms , Echocardiography , Animals , Swine , Heart/diagnostic imaging , Thorax , Artifacts
5.
Ultrasound Med Biol ; 49(12): 2476-2482, 2023 12.
Article in English | MEDLINE | ID: mdl-37704558

ABSTRACT

OBJECTIVE: The aim of this study was to assess the feasibility and imaging options of contrast-enhanced volumetric ultrasound kidney vasculature imaging in a porcine model using a prototype sparse spiral array. METHODS: Transcutaneous freehand in vivo imaging of two healthy porcine kidneys was performed according to three protocols with different microbubble concentrations and transmission sequences. Combining high-frame-rate transmission sequences with our previously described spatial coherence beamformer, we determined the ability to produce detailed volumetric images of the vasculature. We also determined power, color and spectral Doppler, as well as super-resolved microvasculature in a volume. The results were compared against a clinical 2-D ultrasound machine. RESULTS: Three-dimensional visualization of the kidney vasculature structure and blood flow was possible with our method. Good structural agreement was found between the visualized vasculature structure and the 2-D reference. Microvasculature patterns in the kidney cortex were visible with super-resolution processing. Blood flow velocity estimations were within a physiological range and pattern, also in agreement with the 2-D reference results. CONCLUSION: Volumetric imaging of the kidney vasculature was possible using a prototype sparse spiral array. Reliable structural and temporal information could be extracted from these imaging results.


Subject(s)
Kidney , Microvessels , Animals , Swine , Kidney/diagnostic imaging , Kidney/blood supply , Ultrasonography/methods , Microvessels/diagnostic imaging , Phantoms, Imaging , Microbubbles
6.
Eur Heart J ; 44(38): 3827-3844, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37599464

ABSTRACT

Obesity is a modifiable cardiovascular risk factor, but adipose tissue (AT) depots in humans are anatomically, histologically, and functionally heterogeneous. For example, visceral AT is a pro-atherogenic secretory AT depot, while subcutaneous AT represents a more classical energy storage depot. Perivascular adipose tissue (PVAT) regulates vascular biology via paracrine cross-talk signals. In this position paper, the state-of-the-art knowledge of various AT depots is reviewed providing a consensus definition of PVAT around the coronary arteries, as the AT surrounding the artery up to a distance from its outer wall equal to the luminal diameter of the artery. Special focus is given to the interactions between PVAT and the vascular wall that render PVAT a potential therapeutic target in cardiovascular diseases. This Clinical Consensus Statement also discusses the role of PVAT as a clinically relevant source of diagnostic and prognostic biomarkers of vascular function, which may guide precision medicine in atherosclerosis, hypertension, heart failure, and other cardiovascular diseases. In this article, its role as a 'biosensor' of vascular inflammation is highlighted with description of recent imaging technologies that visualize PVAT in clinical practice, allowing non-invasive quantification of coronary inflammation and the related residual cardiovascular inflammatory risk, guiding deployment of therapeutic interventions. Finally, the current and future clinical applicability of artificial intelligence and machine learning technologies is reviewed that integrate PVAT information into prognostic models to provide clinically meaningful information in primary and secondary prevention.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Artificial Intelligence , Adipose Tissue/pathology , Biomarkers , Coronary Vessels , Inflammation
7.
J Comp Physiol B ; 193(5): 581-595, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37644284

ABSTRACT

Employing animal models to study heart failure (HF) has become indispensable to discover and test novel therapies, but their translatability remains challenging. Although cytoskeletal alterations are linked to HF, the tubulin signature of common experimental models has been incompletely defined. Here, we assessed the tubulin signature in a large set of human cardiac samples and myocardium of animal models with cardiac remodeling caused by pressure overload, myocardial infarction or a gene defect. We studied levels of total, acetylated, and detyrosinated α-tubulin and desmin in cardiac tissue from hypertrophic (HCM) and dilated cardiomyopathy (DCM) patients with an idiopathic (n = 7), ischemic (n = 7) or genetic origin (n = 59), and in a pressure-overload concentric hypertrophic pig model (n = 32), pigs with a myocardial infarction (n = 28), mature pigs (n = 6), and mice (n = 15) carrying the HCM-associated MYBPC32373insG mutation. In the human samples, detyrosinated α-tubulin was increased 4-fold in end-stage HCM and 14-fold in pediatric DCM patients. Acetylated α-tubulin was increased twofold in ischemic patients. Across different animal models, the tubulin signature remained mostly unaltered. Only mature pigs were characterized by a 0.5-fold decrease in levels of total, acetylated, and detyrosinated α-tubulin. Moreover, we showed increased desmin levels in biopsies from NYHA class II HCM patients (2.5-fold) and the pressure-overload pig model (0.2-0.3-fold). Together, our data suggest that desmin levels increase early on in concentric hypertrophy and that animal models only partially recapitulate the proliferated and modified tubulin signature observed clinically. Our data warrant careful consideration when studying maladaptive responses to changes in the tubulin content in animal models.

8.
Sci Rep ; 13(1): 10683, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37393320

ABSTRACT

Safety and efficacy of coronary drug-eluting stents (DES) are often preclinically tested using healthy or minimally diseased swine. These generally show significant fibrotic neointima at follow-up, while in patients, incomplete healing is often observed. The aim of this study was to investigate neointima responses to DES in swine with significant coronary atherosclerosis. Adult familial hypercholesterolemic swine (n = 6) received a high fat diet to develop atherosclerosis. Serial OCT was performed before, directly after, and 28 days after DES implantation (n = 14 stents). Lumen, stent and plaque area, uncovered struts, neointima thickness and neointima type were analyzed for each frame and averaged per stent. Histology was performed to show differences in coronary atherosclerosis. A range of plaque size and severity was found, from healthy segments to lipid-rich plaques. Accordingly, neointima responses ranged from uncovered struts, to minimal neointima, to fibrotic neointima. Lower plaque burden resulted in a fibrotic neointima at follow-up, reminiscent of minimally diseased swine coronary models. In contrast, higher plaque burden resulted in minimal neointima and more uncovered struts at follow-up, similarly to patients' responses. The presence of lipid-rich plaques resulted in more uncovered struts, which underscores the importance of advanced disease when performing safety and efficacy testing of DES.


Subject(s)
Coronary Artery Disease , Drug-Eluting Stents , Hyperlipoproteinemia Type II , Skin Abnormalities , Animals , Swine , Drug-Eluting Stents/adverse effects , Neointima , Hyperlipoproteinemia Type II/therapy , Plaque, Amyloid , Lipids
9.
Aging Cell ; 22(3): e13768, 2023 03.
Article in English | MEDLINE | ID: mdl-36756698

ABSTRACT

Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as bona fide models of heart failure.


Subject(s)
DNA-Binding Proteins , Heart Failure , Mice , Animals , Humans , DNA-Binding Proteins/metabolism , Myocytes, Cardiac/metabolism , DNA Repair/genetics , DNA Damage/genetics , Heart Failure/genetics , Endonucleases
10.
Am J Physiol Heart Circ Physiol ; 323(6): H1080-H1090, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36206049

ABSTRACT

The interplay of mechanisms regulating coronary blood flow (CBF) remains incompletely understood. Previous studies in dogs indicated that CBF regulation by KATP channels, adenosine, and nitric oxide (NO) follows a nonlinear redundancy design and fully accounted for exercise-induced coronary vasodilation. Conversely, in swine, these mechanisms appear to regulate CBF in a linear additive fashion with considerable exercise-induced vasodilation remaining when all three mechanisms are inhibited. A direct comparison between these studies is hampered by the different doses and administration routes (intravenous vs. intracoronary) of drugs inhibiting these mechanisms. Here, we investigated the role of KATP channels, adenosine, and NO in CBF regulation in swine using identical drug regimen as previously employed in dogs. Instrumented swine were exercised on a motor-driven treadmill, before and after blockade of KATP channels (glibenclamide, 50 µg/kg/min ic) and combination of inhibition of NO synthase (Nω-nitro-l-arginine, NLA, 1.5 mg/kg ic) and adenosine receptors (8-phenyltheophylline, 8PT, 5 mg/kg iv) or their combination NLA + 8PT + glibenclamide. Glibenclamide and NLA + 8PT each produced coronary vasoconstriction both at rest and during exercise, whereas the combination of NLA + 8PT + glibenclamide resulted in a small further coronary vasoconstriction compared with NLA + 8PT that was, however, less than the sum of the vasoconstriction produced by NLA + 8PT and glibenclamide, each. Thus, in contrast to previous observations in the dog, 1) the coronary vasoconstrictor effect of glibenclamide was not enhanced in the presence of NLA + 8PT and 2) the exercise-induced increase in CBF was largely maintained. These findings show profound species differences in the mechanisms controlling CBF at rest and during exercise.NEW & NOTEWORTHY The present study demonstrates important species differences in the regulation of coronary blood flow by adenosine, NO, and KATP channels at rest and during exercise. In swine, these mechanisms follow a linear additive design, as opposed to dogs which follow a nonlinear redundant design. Simultaneous blockade of all three mechanisms virtually abolished exercise-induced coronary vasodilation in dogs, whereas a substantial vasodilator reserve could still be recruited during exercise in swine.


Subject(s)
Adenosine , Nitric Oxide , Swine , Dogs , Animals , Adenosine/pharmacology , Nitric Oxide/metabolism , Coronary Circulation/physiology , Vasodilation , Glyburide/pharmacology , Adenosine Triphosphate/pharmacology , Coronary Vessels , KATP Channels
11.
Sci Rep ; 12(1): 12326, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853948

ABSTRACT

Activation of the kynurenine pathway (KP) has been reported in patients with pulmonary arterial hypertension (PAH) undergoing PAH therapy. We aimed to determine KP-metabolism in treatment-naïve PAH patients, investigate its prognostic values, evaluate the effect of PAH therapy on KP-metabolites and identify cytokines responsible for altered KP-metabolism. KP-metabolite levels were determined in plasma from PAH patients (median follow-up 42 months) and in rats with monocrotaline- and Sugen/hypoxia-induced PH. Blood sampling of PAH patients was performed at the time of diagnosis, six months and one year after PAH therapy. KP activation with lower tryptophan, higher kynurenine (Kyn), 3-hydroxykynurenine (3-HK), quinolinic acid (QA), kynurenic acid (KA), and anthranilic acid was observed in treatment-naïve PAH patients compared with controls. A similar KP-metabolite profile was observed in monocrotaline, but not Sugen/hypoxia-induced PAH. Human lung primary cells (microvascular endothelial cells, pulmonary artery smooth muscle cells, and fibroblasts) were exposed to different cytokines in vitro. Following exposure to interleukin-6 (IL-6)/IL-6 receptor α (IL-6Rα) complex, all cell types exhibit a similar KP-metabolite profile as observed in PAH patients. PAH therapy partially normalized this profile in survivors after one year. Increased KP-metabolites correlated with higher pulmonary vascular resistance, shorter six-minute walking distance, and worse functional class. High levels of Kyn, 3-HK, QA, and KA measured at the latest time-point were associated with worse long-term survival. KP-metabolism was activated in treatment-naïve PAH patients, likely mediated through IL-6/IL-6Rα signaling. KP-metabolites predict response to PAH therapy and survival of PAH patients.


Subject(s)
Interleukin-6 , Kynurenine , Pulmonary Arterial Hypertension , Receptors, Interleukin-6 , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Hypoxia/metabolism , Interleukin-6/metabolism , Kynurenic Acid/metabolism , Kynurenine/metabolism , Monocrotaline , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Quinolinic Acid/metabolism , Rats , Receptors, Interleukin-6/metabolism
12.
J Physiol ; 600(17): 3931-3950, 2022 09.
Article in English | MEDLINE | ID: mdl-35862359

ABSTRACT

Prematurely born young adults who experienced neonatal oxidative injury (NOI) of the lungs have increased incidence of cardiovascular disease. Here, we investigated the long-term effects of NOI on cardiopulmonary function in piglets at the age of 10-12 weeks. To induce NOI, term-born piglets (1.81 ± 0.06 kg) were exposed to hypoxia (10-12% F iO 2 ${F}_{{\rm{iO}}_{\rm{2}}}$ ), within 2 days after birth, and maintained for 4 weeks or until symptoms of heart failure developed (range 16-28 days), while SHAM piglets were normoxia raised. Following recovery (>5 weeks), NOI piglets were surgically instrumented to measure haemodynamics during hypoxic challenge testing (HCT) and exercise with modulation of the nitric-oxide system. During exercise, NOI piglets showed a normal increase in cardiac index, but an exaggerated increase in pulmonary artery pressure and a blunted increase in left atrial pressure - suggesting left atrial under-filling - consistent with an elevated pulmonary vascular resistance (PVR), which correlated with the duration of hypoxia exposure. Moreover, hypoxia duration correlated inversely with stroke volume (SV) during exercise. Nitric oxide synthase inhibition and HCT resulted in an exaggerated increase in PVR, while the PVR reduction by phosphodiesterase-5 inhibition was enhanced in NOI compared to SHAM piglets. Finally, within the NOI piglet group, prolonged duration of hypoxia was associated with a better maintenance of SV during HCT, likely due to the increase in RV mass. In conclusion, duration of neonatal hypoxia appears an important determinant of alterations in cardiopulmonary function that persist further into life. These changes encompass both pulmonary vascular and cardiac responses to hypoxia and exercise. KEY POINTS: Children who suffered from neonatal oxidative injury, such as very preterm born infants, have increased risk of cardiopulmonary disease later in life. Risk stratification requires knowledge of the mechanistic underpinning and the time course of progression into cardiopulmonary disease. Exercise and hypoxic challenge testing showed that 10- to 12-week-old swine that previously experienced neonatal oxidative injury had increased pulmonary vascular resistance and nitric oxide dependency. Duration of neonatal oxidative injury was a determinant of structural and functional cardiopulmonary remodelling later in life. Remodelling of the right ventricle, as a result of prolonged neonatal oxidative injury, resulted in worse performance during exercise, but enabled better performance during the hypoxic challenge test. Increased nitric oxide dependency together with age- or comorbidity-related endothelial dysfunction may contribute to predisposition to pulmonary hypertension later in life.


Subject(s)
Hypertension, Pulmonary , Ventricular Dysfunction, Right , Animals , Animals, Newborn , Humans , Hypoxia , Lung/blood supply , Nitric Oxide , Oxidative Stress , Swine , Ventricular Dysfunction, Right/etiology
13.
BMJ Open Sci ; 6(1): e100259, 2022.
Article in English | MEDLINE | ID: mdl-35372701

ABSTRACT

Open, prospective registration of a study protocol can improve research rigour in a number of ways. Through preregistration, key features of the study's methodology are recorded and maintained as a permanent record, enabling comparison of the completed study with what was planned. By recording the study hypothesis and planned outcomes a priori, preregistration creates transparency and can reduce the risk of several common biases, such as hypothesising after results are known and outcome switching or selective outcome reporting. Second, preregistration raises awareness of measures to reduce bias, such as randomisation and blinding. Third, preregistration provides a comprehensive listing of planned studies, which can prevent unnecessary duplication and reduce publication bias. Although commonly acknowledged and applied in clinical research since 2000, preregistration of animal studies is not yet the norm. In 2018 we launched the first dedicated, open, online register for animal study protocols: wwwpreclinicaltrialseu. Here, we provide insight in the development of preclinicaltrials.eu (PCT) and evaluate its use during the first 3 years after its launch. Furthermore, we elaborate on ongoing developments such as the rise of comparable registries, increasing support for preregistration in the Netherlands-which led to the funding of PCT by the Dutch government-and pilots of mandatory preregistration by several funding bodies. We show the international coverage of currently registered protocols but with the overall low number of (pre)registered protocols.

14.
Cardiovasc Res ; 118(16): 3171-3182, 2022 12 29.
Article in English | MEDLINE | ID: mdl-35420126

ABSTRACT

The human gut microbiota is the microbial ecosystem in the small and large intestines of humans. It has been naturally preserved and evolved to play an important role in the function of the gastrointestinal tract and the physiology of its host, protecting from pathogen colonization, and participating in vitamin synthesis, the functions of the immune system, as well as glucose homeostasis and lipid metabolism, among others. Mounting evidence from animal and human studies indicates that the composition and metabolic profiles of the gut microbiota are linked to the pathogenesis of cardiovascular disease, particularly arterial hypertension, atherosclerosis, and heart failure. In this review article, we provide an overview of the function of the human gut microbiota, summarize, and critically address the evidence linking compositional and functional alterations of the gut microbiota with atherosclerosis and coronary artery disease and discuss the potential of strategies for therapeutically targeting the gut microbiota through various interventions.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Gastrointestinal Microbiome , Animals , Humans , Cardiovascular Diseases/metabolism , Microcirculation , Ecosystem
15.
Stroke ; 53(4): 1411-1422, 2022 04.
Article in English | MEDLINE | ID: mdl-35164533

ABSTRACT

Translation of acute ischemic stroke research to the clinical setting remains limited over the last few decades with only one drug, recombinant tissue-type plasminogen activator, successfully completing the path from experimental study to clinical practice. To improve the selection of experimental treatments before testing in clinical studies, the use of large gyrencephalic animal models of acute ischemic stroke has been recommended. Currently, these models include, among others, dogs, swine, sheep, and nonhuman primates that closely emulate aspects of the human setting of brain ischemia and reperfusion. Species-specific characteristics, such as the cerebrovascular architecture or pathophysiology of thrombotic/ischemic processes, significantly influence the suitability of a model to address specific research questions. In this article, we review key characteristics of the main large animal models used in translational studies of acute ischemic stroke, regarding (1) anatomy and physiology of the cerebral vasculature, including brain morphology, coagulation characteristics, and immune function; (2) ischemic stroke modeling, including vessel occlusion approaches, reproducibility of infarct size, procedural complications, and functional outcome assessment; and (3) implementation aspects, including ethics, logistics, and costs. This review specifically aims to facilitate the selection of the appropriate large animal model for studies on acute ischemic stroke, based on specific research questions and large animal model characteristics.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Brain Ischemia/therapy , Disease Models, Animal , Dogs , Humans , Reproducibility of Results , Sheep , Swine , Tissue Plasminogen Activator
16.
Cardiovasc Res ; 118(15): 3016-3051, 2022 12 09.
Article in English | MEDLINE | ID: mdl-34999816

ABSTRACT

Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.


Subject(s)
Cardiovascular Diseases , Humans , Animals , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/therapy , Research Design , Models, Animal
17.
Int J Artif Organs ; 45(4): 388-396, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33818165

ABSTRACT

BACKGROUND: We recently demonstrated that a novel intra-ventricular membrane pump (IVMP) was able to increase the pump function of isolated beating porcine hearts. In follow-up, we now investigated the impact of the IVMP on myocardial oxygen consumption and total mechanical efficiency (TME) and assessed the effect of IVMP-support in acutely failing hearts. METHODS: In 10 ex vivo beating porcine hearts, we studied hemodynamic parameters, as well as arterial and coronary venous oxygen content. We assessed cardiac power (CP), myocardial oxygen consumption (MVO2), and TME (CP divided by MVO2) under baseline conditions and during IVMP-support. Additionally, five isolated hearts were subjected to global hypoxia to investigate the effects of IVMP-support on CP under conditions of acute heart failure. RESULTS: Under physiological conditions, baseline CP was 0.36 ± 0.10 W, which increased to 0.65 ± 0.16 W during IVMP-support (increase of 85% ± 24, p < 0.001). This was accompanied by an increase in MVO2 from 18.6 ± 6.2 ml/min at baseline, to 22.3 ± 5.0 ml/min during IVMP-support (+26 ± 31%, p = 0.005). As a result, TME (%) increased from 5.9 ± 1.2 to 8.8 ± 1.8 (50 ± 22% increase, p < 0.001). Acute hypoxia-induced cardiac pump failure reduced CP by 35 ± 6%, which was fully restored to baseline levels during IVMP-support in all hearts. CONCLUSION: IVMP-support improved mechanical efficiency under physiological conditions, as the marked increase in cardiac performance only resulted in a modest increase in oxygen consumption. Moreover, the IVMP rapidly restored cardiac performance under conditions of acute pump failure. These observations warrant further study, to evaluate the effects of IVMP-support in in vivo animal models of acute cardiac pump failure.


Subject(s)
Heart Failure , Heart-Assist Devices , Animals , Heart/physiology , Heart Failure/therapy , Hemodynamics/physiology , Oxygen Consumption , Swine
18.
Cardiovasc Res ; 118(2): 357-371, 2022 01 29.
Article in English | MEDLINE | ID: mdl-34358290

ABSTRACT

Regular aerobic exercise (RAEX) elicits several positive adaptations in all organs and tissues of the body, culminating in improved health and well-being. Indeed, in over half a century, many studies have shown the benefit of RAEX on cardiovascular outcome in terms of morbidity and mortality. RAEX elicits a wide range of functional and structural adaptations in the heart and its coronary circulation, all of which are to maintain optimal myocardial oxygen and nutritional supply during increased demand. Although there is no evidence suggesting that oxidative metabolism is limited by coronary blood flow (CBF) rate in the normal heart even during maximal exercise, increased CBF and capillary exchange capacities have been reported. Adaptations of coronary macro- and microvessels include outward remodelling of epicardial coronary arteries, increased coronary arteriolar size and density, and increased capillary surface area. In addition, there are adjustments in the neural and endothelial regulation of coronary macrovascular tone. Similarly, there are several adaptations at the level of microcirculation, including enhanced (such as nitric oxide mediated) smooth muscle-dependent pressure-induced myogenic constriction and upregulated endothelium-dependent/shear-stress-induced dilation, increasing the range of diameter change. Alterations in the signalling interaction between coronary vessels and cardiac metabolism have also been described. At the molecular and cellular level, ion channels are key players in the local coronary vascular adaptations to RAEX, with enhanced activation of influx of Ca2+ contributing to the increased myogenic tone (via voltage-gated Ca2+ channels) as well as the enhanced endothelium-dependent dilation (via TRPV4 channels). Finally, RAEX elicits a number of beneficial effects on several haemorheological variables that may further improve CBF and myocardial oxygen delivery and nutrient exchange in the microcirculation by stabilizing and extending the range and further optimizing the regulation of myocardial blood flow during exercise. These adaptations also act to prevent and/or delay the development of coronary and cardiac diseases.


Subject(s)
Cardiovascular Diseases/prevention & control , Coronary Circulation , Coronary Vessels/physiopathology , Exercise , Healthy Lifestyle , Hemodynamics , Microcirculation , Microvessels/physiopathology , Adaptation, Physiological , Animals , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/metabolism , Heart Disease Risk Factors , Humans , Microvessels/diagnostic imaging , Microvessels/metabolism , Prognosis , Protective Factors , Risk Assessment , Risk Reduction Behavior
19.
Cardiovasc Res ; 118(3): 763-771, 2022 02 21.
Article in English | MEDLINE | ID: mdl-33677526

ABSTRACT

Our purpose was to perform a systematic review to assess the prevalence of microvascular angina (MVA) among patients with stable symptoms in the absence of obstructive coronary artery disease (CAD). We performed a systematic review of the literature to group the prevalence of MVA, based on diagnostic pathways and modalities. We defined MVA using three definitions: (i) suspected MVA using non-invasive ischaemia tests; proportion of patients with non-obstructive CAD among patients with symptoms and a positive non-invasive ischaemia test result, (ii) suspected MVA using specific modalities for MVA; proportion of patients with evidence of impaired microvascular function among patients with symptoms and non-obstructive CAD, and (iii) definitive MVA; proportion of patients with positive ischaemia test results among patients with an objectified impaired microvascular dysfunction. We further examined the ratio of women-to-men for the different groups. Of the 4547 abstracts, 20 studies reported data on MVA prevalence. The median prevalence was 43% for suspected MVA using non-invasive ischaemia test, 28% for suspected MVA using specific modalities for MVA, and 30% for definitive MVA. Overall, more women were included in the studies reporting sex-specific data. The women-to-men ratio for included participants was 1.29. However, the average women-to-men ratio for the MVA cases was 2.50. In patients with stable symptoms of ischaemia in the absence of CAD, the prevalences of suspected and definitive MVA are substantial. The results of this study should warrant cardiologists to support, promote and facilitate the comprehensive evaluation of the coronary microcirculation for all patients with symptoms and non-obstructive CAD.


Subject(s)
Coronary Artery Disease , Microvascular Angina , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Coronary Circulation , Female , Humans , Male , Microcirculation , Microvascular Angina/diagnosis , Microvascular Angina/epidemiology , Prevalence
20.
Adv Healthc Mater ; 11(6): e2101570, 2022 03.
Article in English | MEDLINE | ID: mdl-34865315

ABSTRACT

Atherosclerotic arteries are commonly treated using drug-eluting stents (DES). However, it remains unclear whether and how the properties of atherosclerotic plaque affect drug transport in the arterial wall. A limitation of the currently used atherosclerotic animal models to study arterial drug distribution is the unpredictability of plaque size, composition, and location. In the present study, the aim is to create an artificial atherosclerotic plaque-of reproducible and controllable complexity and implantable at specific locations-to enable systematic studies on transport phenomena of drugs in stented atherosclerosis-mimicking arteries. For this purpose, mixtures of relevant lipids at concentrations mimicking atherosclerotic plaque are incorporated in gelatin/alginate hydrogels. Lipid-free (control) and lipid-rich hydrogels (artificial plaque) are created, mounted on DES and successfully implanted in porcine coronary arteries ex-vivo. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is used to measure local drug distribution in the arterial wall behind the prepared hydrogels, showing that the lipid-rich hydrogel significantly hampers drug transport as compared to the lipid-free hydrogel. This observation confirms the importance of studying drug transport phenomena in the presence of lipids and of having an experimental model in which lipids and other plaque constituents can be precisely controlled and systematically studied.


Subject(s)
Atherosclerosis , Drug-Eluting Stents , Plaque, Atherosclerotic , Animals , Biological Transport , Coronary Vessels , Stents , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...